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ABSTRACT

Early work on the topic of nonlinear input-output system modeling
is due to Volterra. Morecver, Wiener’s research on nonlinear system
identification i1s gquite well known. Recent papers by koh and Powers on
Volterra filtering and nonlinear system identification and Boyd, Tang
and Chua on measuring Volterra kernels have demonstrated the feasibility
of obtaining "good" estimates of the first few kernels (especially the
first and second) of a Volterra series. However, the higher order terms
seem difficult to ecbtain for a variety of reazcsone.

The purpose of this paper is to introduce a new technigue for
identifying nonlinear systems, and we begin with a single input - single
cutput system. Assuming the system is initially at rest, we calculate
the first kernel (first convolution integral in the continuous case or
firet convolution sum in the discrete case). We then obtain a
controlliable and observable linear reailzation in a particular canonical
form. We probe the actual ronlinear system with an appropriate input
{(or inputs) and determine the output (or ocutputs). For the linear
system we compute the 1input that produces the same output. In the
difference between the 1inputs to the nonlinear and linear systems, we
find basic information about the nonlinear system. There 1s an
interesting class of nonlinear systems for which this type of

ldentification scheme should prove to be acccurate.

*Research supported by the NASA Ames Research Center under Grant MNAG

2-366.
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1. Introduction

Assume we have a system that can be probed with inputs to procduce
corresponding outputs, which we record. We investigate the problem of
identifying a nonlinear mathematical model of this physical system. For
simplicity we take a deterministic approach (even though statistical
technigues can be wuseful 1in our method) because we are interested in
discovering information about the inherent mathematical structure 1n the
systems. Moreover, we shall consider only the continuous time case for
single-input single-output models.

Mast nonlinear system modeling techniguec (including the work of

auns i iivdal LBy sSLeEiiy MCUD Ny LeEnaihtl

Wiener [11) depend on the research of Volterra [2] and the mathematics

intr
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in the Volterra series ang Volterra kernels. Recent excellent

n

references for Volterra and Wiener theories are Fliess, iLamnabhi, and

Lamnabhi-Lagarrigue £[3] and Schetzen [4]3, respectively. Interesting
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Chua (51 for the continuous time case and koh and Fowers (61 for the
discrete time case. All of the above research depends on the Lie
algebra structure inherent in a nonlinear system. For an examination of
this Lie algebra structure in realization theory we suggest a paper of
Crouch [713.

Recent papers in the area of nonlinear control have demonstrated a
remarkable facti many physical systems have mathematical models that are
feedback equivalent to linear systems. References for the eguivalence
prablem (in which the output eguaticn is ignored) are [81, {91, [103,

r111, £123, 0131, (143, 131, [16]1. Applications are in the following

various areas !many of the models are multi-input, multi-output)
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i) aircraft control. OF POOR @yjﬁ@gTy
ii) robotics.
i1i) satellite control.
iv) chemical engineering.
v) electric motor control,
futhors have also investigated the problem of determining conditions
under which a nonlinear system with sutput is feedback egquivalent to a
linear system with linear ocutput (see [18] and [191).
The above facts suggest the following approcach to ronlinear
modeling. Instead of trying to identify Volterra kernels, why don’t we
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attempt to identify the noniineai
a linear system? If a system is feedback equivalent toc a linear system
with linear output, we should obteain geoed results. If a system is not
feedback equivalent, then we should cbtain an "approximation” that is at
least as good as the linear model obtained through standard techniques.
However, the fact that so many physical systems have feedback eguivalent
{to a linear system) models is extremely encouraging.
Our technigue for i1dentifying single-input, single-ocutput nonlinear
systems which are initially at rest 1is described as follows:
1) Assume that the linear part of the system has been
found and realized 1n controllable canonical form.
Since we desire a minimum realizatlion here, we suppocse

that our state space realization 1s alsoc observable.

2) probe the nonlinear system with an input u producing
an output Y. Invert the linear part of the system to

find an input v producing the same output vy.




3) read the states X
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(X9 Xosaeosn ) of the linear
[oud n

system or attach a Luenberger observer {or Kalman

filter in the presence of noise).

4) determine functions o

x) and Six) so that

UL = alx) + f{xiu
for all inputs Us or more realistically, for an
interesting finite subclass of probes wu.

Assuming th
states x = (xl,x

that the above

having nonlinear

at we obtain the linear part of a nonlinear system, the
a,...,xn), and the functions =(x) and #Z(x), we show

technique vields ewxcellent results for those systems

mathematical models which are feedback equivalent to

In section 2 of this paper we consider the Volterra series
approach, several examples, and prove a result concerning our
identification  lechmigue. Sectiun 3 cotitalns e distussivn vl fulu e

directions and related problems.

2. An Identification Technique

We start with a state space representation of a nonlinear system
and derive a Volterra series expansion via the formulas found in [31.

Bur single-input, single-output nonlinear system is

#{t) = fix) + ugix)u
(2.1) y(t) = hix)
where f and g are real analytic vector fields on Eﬁ, h is a real
analytic function, u iz the corntrol or Input and £ and h hoth vanish at
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the origin. If dh denotes the gradient of h and <+,;+> denctes the
duality of one forms and vector fields, then the Lie derivative ot h
with respect to f is
L.h = <dh,yf>.

Similarly, we can define

2. _ 2
Lghs Lghs = Letlehos Loy LoLens Lelh ete.

The Volterra series for the system starting at the origin at time

t =0 1is
{¢
t = : : T
y(t,u) | wl(t,rl)u(rl)d .
4G
(2.2)
-t T
+‘ w ity st )ulryuirtdr.dr, +
o 1 =Rl
JO JO 2 21 2 1 2 1
Ix lﬂg =T,
T e ws(t,fs,...,11)u(TS)...u\TI)GTS...GT1+..
JoJo o
Here
'S PRy raws - \L"l . l)o
1% i LL-7, ) {
w, (tsyr,) = Z L OL L 1h(O) ! !
1 1 vy S f g f vllp‘oi
0’7170
Yo Y1 Yo
v v e (t-7v.) {(r.-71,) 1
- ¢ 1
w_(tsr y7,) = = L OL L 1L L 2h(O) e “8 L
2 2’ 1 . . T gf of yq!yllpol
Yor¥1'Yazo “
(2.3)
b b
VO ul v (t-v ) 5...710
W (BT 5T = L L Lol LR — —
s s Uoye.yw 20 8 9 s Yo
0 =
Since f{0) = 0, we take all VO in the above summations to be O.
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Example 2.1. We consider the 2-dimensional nonlinear system

»1 ] ‘ ye . U
X va [
e_l " |-
{(2.4)
= h(x) = .
Y hix) Xy
Computing some Lie derivatives we find Lgth(O) =1 in
w, (ter )y L L L L3h(0) = 2 in w {tyr s7,)
17771 Tgfgf 2 et
and L L L L3L LBh(O) = 4 in  w (t,7T,.7T,,7,) In fact we can find
gfgfaogf S A R A c 3

at least one nonzero term in each of LR EEREL giving us an
infinite number of nonzero Velterra kernels corresponding to an infinite
dimensional Lie algebra stiructure associated with system (2.4).

Suppose that we do not know system (2.4}, bhut use lirmear analysis
to identify the linear part of the system which is associated with the

first Volterra kermel in (2.3). After realization in controllable

rannnical form we have the linpar csvatem

(2.9

For an input u into the nonlinear system we obtain an output
yit), which we assume is smooth. Substituting y(t) into (2.3) and

differentiating we have

it
x

1]
x

Yty

y(t)

i
x
[
c




Thus plugging U into the linear system vyields the same output as

substituting u inte the nonlinear system. It is clear from (2.4) (if

we knew such equations) that

yit) = %1 = %5
;(t) = ia = xf +u
and UL = yl + u
We do know usu and X, = {(the cutput of the linear system).
If we recognize that UL - u = x? for pairs of inputs u and UL’

then we have identified the nonlinear system 1in an extremely easy

4
. t . .
manner . For example, the input u=1 - 5 into the nonlinear system
corresponds to the input woo= 1 intc the linear system for oproducing
2 4 2
. . t t t™ .2 2
the identical output = Themu, —u=1- (1 - ;= = (5= =«
[ . o P
This 1llustrates the general procedure involving steps 1} - iv)

that we mentioned in the introduction.

The preceeding example 1s of mathematical interest. An example of
a physical system for which our 4 step technigue should prove useful
1s the single link manipulator with joint elasticity [17]. To conserve
pages we shall not work out the details here.

In step 4 of our technique we are to determine functions «(x) and
3x) so that u = alx) + 3(x) u. In our examples we have the special
case that (Bix) =1 and then identify o(x).

It is well understood that for a controllable and observable linear

system of dimension n, there are na parameter that must be identified as

is easily seen in a canonical form (either controllable or observable).




Let’s consider the possibility of a canenical form for a nonlinear
system which is feedback equivalent to a contreollable and observahle
linear system of dimension n.

For feedback equivalence there are three types of operations
involved:

a) state space coordinate changes

bB) nonlinear feedback of the form u + o(x)

o)

t) space dependent input changes of the form {(xJu, where

F{x) is nonvanishing.
Most feedback equivalence results are local in nature, so we assume that
all discussions in this paper hold for some open neighborhood of the

origin in state space.

- - - -~ -

(2.6) % % 0
Vl xe 0
< 3
. = + u
¥ . ¥ 0
LN n -
X ) ceata At 3{ %
i x4 | i a1”1+aawe+ a_n_ x{x) ] i Sx) |
= + to.at =
% Clxl C5¥%g € %n h
where «(x)  and A(x)  are real analyticy E(x) 15 nonvanishing with
h-1 . . .
3Gy = 1, and dh,deh,...,de h are linearly independent. 1t is very
easy to see that letting u o= ofx) + fB{x)u, we have a controllable ang

observable linear system with controllable canonical form




(2.7) fl :E 2
X 0
= +
Y
X X 0
in-l alx +a ¥+ +a % 1
| n | L 171 7272 "7 Tn'n | i |

y = c1x1+ Caxa+...+ anxn

Thus systems like (2.6) fit our technigue for identifying nonlinear
system which are feedback equivalent to linear systems having linear
output.
Theorem 2.1. A nonlinear system (2.1) which 1s feedback equivalent to a
controllable and observable n-dimensional linear system (with linear
cutout) can be put in the form (2.46).
Proof: The state space coordinate changes (§1,§E,...,§ ) to move the
dyramic equation

X o= flx) + uglx)

from (2.1) in the direction of Brunovsky cancnical form must satisfy the

partial differential espuations

<di ,(ad f,g)> = 0, k

it
(@]
i
mna

1

<d§8,(adkf,g)> 0,

=

i
o
-
E
&

(2.8) g __rg> = 0
g > =g
ey, fr = gy
Wi > =i

R




Here (adkf,g) is the usual Lie bracket notation (see [131. Under such

coordinate changes equations (2.1) become

(2.9) 3 1 S ] [ 1
gl ;8 8
2 *3
. = . +u .
iﬂ 1 gn °
- ~ [
fa_ . 4...+a & +o(®
i in | _ algl a5, a g, ol £) | Bx) |
y = h{g)
The state space coordinate transformations ¢ = (§1,Ea, ’én) are not
unigue. It is shown in [181 that if system (2.1) is feedback eguivalent
to a nonlinear system with linear cutput, then at least one of these
transformations gives us that linear output. Hence, with this choice,
we can assume the output equation in (2.9) is vy = c1§l + C:€; ot
c
non
If é(O) = 1, we have the desired form. Assume B(O) = r, r &£
1. and 1=t
N
1T M
(2.10) %, = Le
: 2 r 2
1 a~
b = __"_l
n N
Then (2.9) becomes
(2.1 [ % 1 [ 1 o ]
b ! 2 J
e % Q0
2 3
. = +u :
. ¢
xn—l "n
X a, X, ra X t...*a_x_+alx) 20x)
Xoteaot
Y C1x1+CE%8 “nn




with [(3(0) = 1. ]
In example 2.1, if we attempt to identify the nonlinear system by
our technique, the first step is to model the linear part of the systen.
Then we pursue the function oi(x), which is a function of the states of
the linear system.

However, consider the following diagram where NL denctes the

nonlinear system, and L 1inverse is the inverse of the linear system

(the linear part that we have identified).

9 .
i o

+ L

u

+

—0

Figure 1
Here u and vy are the input and cutput of the nonlinear systems
respectively. The function & 1is the difference of v and u, but we
have no need to identify it precisely. For example, cuppose we are to
stabilize the nonlinear system about the 0 equillibrium point.

Choose a feedback matrix K = [klvk .,kn] to stabilize the

e;..

linear part of the system and apply the following diagrams where L

denotes the linear system.

|« |

_ ' | !
- S
o ’j;:ggiff58*| X
. L —t-
:t L ‘i,—!

vl
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3. Related Problems

The following discussion involves possible computer-aided methods
for implementing the modeling technique introduced in the first two

sections of this paper.

Suppose we consider a physical system that we probe with a finite
number of 1inputs and record the corresponding outputs. If we wish to
model this system as an nth order controllable and observable linear

system, we first establish a criterion (usually least squares) for

"closeness of match."” We assume a model (e.g. controllable form)
3 Vl '1 :,(_a 7 O ]
X x3 0
(3.1) ; = . + o, :
. . . .
. Q
tn-a "n + + + 1
i X ] i a X Fagrteeata x ] i ]
= FO ¥+, ..+
y C % tea%s Cr¥n’

and compute the parameters 2,sa.s...3a »C

i 2 n 1 89-..’Cn giving us a best

match."”

Thus we have approximated our system by a linear model in canonical
form. Since those nonlinear systems that are feedback eguivalent to a
linear system with linear output contain the linear systems as a proper
subclassy we wuse the identified linear model (3.1) as a first step in

our more general process. We consider the "canonical form”

..18_



(3.2)

where a, sa

Bl :
2 3
. = . + u .
gn—l xn
%n a1x1+aaxa+...+anxr+a(x) BOx)
I
y = c1x1+c2x2+...+cnxn,
1 E,...,an,cl,ca,...,cn are known.

Invert the linear system (3.1) to obtain the finite number

of

correspending  inputs u having the same outputs vy as the nonlinear

L

system with 1nputs u. Knowing the states X pRoree s X of the linear

.
system, we set up a

in

that

"rlogeness criterion” ¥ B ate! sl Y - v
Ci05Eemess Crizeriidn H ing DEN WS a0

L

afx) and B{x) are in some standard set of functionss

poclynomials of degree m,

Here

‘f:'( XDy

1]
|

ox{x)

we have used a multi-index notation for the coefficients o(x)

and x = (xl,xa,...,xn). For example we set
x{x) = +0; + +o Xt xa+o X, on ot +ox ®.oX +
R Al T~ Tar= R AT TS LA By W= Lok R~ Bl W ab Rt

m
(o4 p S Jo ¢ ) D G R e X .
E;E 2 853 23 MMy . n s N

Plans are to set up simulation studies as well as prove re

concerning the above method.

..13._
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u = &x)+3(x)u. Perhaps an appropriate method here is to assume

e.qg.

=3

and



(a2l

[33

£43

[31

(63

(83

(93

(101

(111

123

{133

REFERENCES

N. Wiener, nonlinear Problems in Random Thecry. New York:
Wiley, 1938.

V. Volterra,; Theory of Functionals. London: Blackie, 1930
{reprinted by Dover., New York, 1939).

M. Fliess, M. Lcmnabhi, and F. Lamnobhi-Lagarrigue, 4n algebraic
spproach to nonlinear functionsl sxpsnsionz,  IEEE Trans,

Circuits Syst. 30, 1983, 3554-370.

It

M. Schetzen, Nenlianear systsm medeling bazed oo the Wies
Theory, Proc. of the IEEE 69, 1981, 1557-1573.

S. Boyd, Y. S. Tang, and L. 0. Chua, leasuring Velterra Kernels,
IEEE Trans. Circuits Syst. 30, 1983, 571-577.

T. Koh and E.J. Powers, Second-Order Veolterra filtering and its
arplicat ion Yo ponlinesrs  system  identificatiszp. [EEE Trans,

Acoust., Speechs; Signal Procéssing 33, 1983, 1445~1435.

S D T I U S DU T £

P.E. Crouch, iry - =
19, 2.

S1AM J. Contr. Opt.

G. Meyer and L. Cicelani, 4 formal structure for advanced
automatic flight control systems, NASA TN D-7940, 1975.

Application of nonlinear system inverses to autoe- matic

[]
icht control dezicn - zsvstem concent

Flioht control dezicn - svstem concen vz oand flioght  svslustisns,
AGARDograph 251 on Theory and Applications of Optimal Control in
{\,Grc'—nace Cyectoeme =] =32k A ramrintad Ry NATO 19Qn0

1 SYSUEHIDI T REIIVy CUaey T TR ATIVEU DY v d IOV e

R. W. Brockett, Fesdbsck invariantz: for aonlinesr syzteamsz, IFAC
Congresss Helsinki, 1978, 11153-1120.

B. Jakubczyk and W. Respondek, & liassrization of cantrol
systems, Bull. Acad. Polon. 5ci.y Ser. S5ci. Math Astronom. Phys.
28, 1980, 517-522.

R. Sommery Control design for wnultivariable non-!linear lime
varying systems, Int. J. Control 31, No. 5, 1980, 883-891.

;o oeguivalents

(=3

R. Suy On the line

& ¥ ponliassr =yzltams, Systems
and Control Letters 2 No. I, 1982, 4B-52.

_14_



{1417 L. R. Hunt, R. 5Su, and G. Meyer, Design for multi-input
nonlinear systems, Differential Geometric Control Theory
Conference, Birkhauser, Boston, R. W. Brockett, R. 5. Millman,
and H. J. Sussmann, Eds., 27, 1983, 268-298.

{153 L. R. Hunt and R. Su, Control of nonlinear time-varvying systems,
Proc. 20th IEEE Conf. on Decision and Control, San Diego, CA;
1981, 558-3563.

[163 A. J. Krener, A. Isidori, and W. J. Respondek, FPartizl and
robust linearization by feedbsck, Proc. 22nd IEEE Conf. Decision
and Control, San Antonio, Texas, 1983, 126-130.

{171 R. Marino and M. W. Spongsy HNoalinsar control tachoigues  for
flexible Joint manipulators: a =single 1ink case study,s
preprint.

[181 Hunt, M. Luksic, and R. Su, Nonlinear Input-output systems;
Nonlinear Analysis and Applications. New York: Marcel Dekker,

1987.

[19] H. G. Leey A. Arapostothiss, and S. 1. Marcus, an the
linearization of dizorete timse zystems, Proceedings of Automatic
Contrel Conference, 1987, to appear.



